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NONLINEAR RESPONSE MATRIX METHODS FOR RADIATIVE TRANSFER*

W. F. Miller, Jr and E. E. Lewist

Los Alamos National Laboratory Northwestern University
Los Alamos, New Mexico 87545 Evanston, Illinois 601201
(505) 667-7978 (312, 491-3579

ABSTRACT

A nonlinear response metrix formalism 1s ;-esented for the solution of time-
dependent radiative transfer problems. The essential feature of the method is
that within each computational cell the temperature is calculated in response
to the incoming photons from all frequency groups. Thus the updat 1g of the
temperature distributior 1s placed within the iterative solution of the space-
angle trangport problem, instead of being placed outside of it. The method is
formulated for both grey and mltifrequency problems and applied in slab
geometry. The method {s compared to the more conventional source iteration
technique.

1. INTRODUCTION

The response watrix method has enjoyed considerable auciegs in
the neutron transport community for a reasonably wide class of problems o,
Since the method involves an iteration on the particle flux at spatial cell
boundaries, experience indicates that the approach 1is most efficient when
spatial cells are optically thick. Then, the number of boundary crossings
by particles is comparatively small. On the other hand, when there are many
optically thin cells, particles cross many cells before being absorbed or
leaking and many boundary croseings are involved to achieve a sclution,

There 1s & class of nonlinear radiation transfer problems for which the
response matrix apprcach scems promising. In these problems, the material
satisfies the requirerments of 1local thermodynamic equilibrium but th
radiation and material energy densities are not generally in equilibrium,
This seituation applies in many problems involving stellar or other high
temperature, radi{ating media. When the radiating medium contains at least

some moderately high Z material, the spatial cells can be very optically thick
to photons,

There 1= another motivation for considering response matrix approaches for
this class of radiation transfer problems, The basic idea of the nonlinear
responge matrix method developed in this paper is to solve for the local cell
temperature as well as the outflow of radiation, agsuming that only incoming
photon intensity 1is kinown. The frequency spectrum of the reemitted radiation
is a function of only the local cell temperature. Heuristically, by
calculating a new temperature and emission gpectrum as one sweeps the spatisl
mesh, the microscopic physics of the problem is more fafthfully followed.
Thus, in principle the piocess should converge rapidly.

*This work was performed under the auspices of the U.S. Department of Energy
Consultant, Los Alamos National Laboratory
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In this paper we examine these arguments by applying response matrix methods
to time-dependent radiation transfer problems and comparing the results with
existing methods. In section Il we formulate the response matrix in the grey
approximation and compare it to two alternative algorithms for a series of
model problems. In section IIl the method Is generalized to a multifrequency
formalism and applied to a 30 group-time-dependent problem in slab geometry.

11. GREY RADIATIVE TRANSFER
The transport of radiation 1n a physical wmedium depends
inherently wupon the frequency of the radiation. This 1s because the

properties of the medium are frequency-dependent and because, when heated, the
medium radiates photons of a wide range of frequencies. However, in order to
clearly describe the response matrix approach and unambiguously compare 1its
characteristics to other approaches, we first consider the grey case in which
physical processes are 1independent of frequency. We further assume for
simplicity that the specific heat and opacity are independent of the material
temperature and cre spatially constant.

A, The Basic Equations
The starting point for he calculations is the time-%gpgndent
grey thermal radiation transfer equation for the photon intensity, 1(r,q,t),

[ % %? + b+ o)1(F,0,0) = cacT(Z,0)". (1)

We also define the angularly integrated intensity
¢(7,t) = fdal(r,q,t),

and T(F.Z) as the absolute materisl temperature, In Eq. (1), the notation 1is
standard” with r denoting spatial location, f} the directior of ghoton travel
and t, the time. In Eq. (1), the temperature term describes the photon
enission where a is the radiation constant, ¢ is the speed of light, and ~ is
the macroscopic absorption coefficient or opacity depending upon the units
used. Owing to the fact that the emlssion of photons by material ir dependent
upon the fourth power of the remperature, the equation is nonlinear in T,

We next require an energy conservation equation to provide an expression for
the temperatuyre. The energy equation is

c, %? T(r,t) = o¢(r,t) - aacT(?.t)a + W(E,t), (2)
where ¢, {s the specific heat and W i{s an external source of encryy to the
material. For many applications,”’ the constant specific heat assumption used
here is a reasonable approximation. The assumption of a constant opacity is
not as defensible but serves the purpose of allowing simple but mecaningful
test cases for comparing matrix solution algorithms, )

The above equations {imply assumptions about the physical problem other than
those already described. Namely, we assume that the background material is
stat{onary, thermal radistive emission 1is governed by local thermodynanic
equilibrium in the matrer, and ecattering processes, thermel coaduction and
convect{on can be {ignored. There are i{important classes of problems for which
all these assumptions are reasonable,



B. Time Differencing
In each of the approaches considered here we assume implicit
time differencing of the equation of radiative transfer. Thus

- ~ > N 4 -
[ T + oll(r,n) = 0acT(f) + t1'(r, ), (3)
where we define

, -l (4)

In Eq. (3), all quantities are defined at time t except I' and T', where the
prime indicates evaluation at the preceding time step. (Note thar 1f the
opacity 1iIs temperature dependent it is assumed to be evaluated using the old
temperature so in this case the method 1is not implicit in the strictest sense
of the word.) Implicit differencing of the energy equation. Eq. (2), yields a
transcendental relationship for the temperature in terms of the photon
distribution
0d(#) +c tT'(F) + W(F)

oacT(F)a - . (5)
c 1

1+ ;%; ()3

Several methods have been proposed for solving this set of equations. The
first of these, which we call Methnd I, involves a straightforward iteration:

139 + 311, ), (F,8) = o'acT (D 4ar'(£,0), (6)
br 1y () = fa01 1, ), (7)
and + ) ? +
1+ ;¥: 'Iul(l?)_3

where k 1s the {iteration 1index. In this approach, a radiatign transfer
calculation Eq. (6) is performed assuming a known temperature, T (r).

This step 1s equivalent to a pure absorber solution in neutron t¥ansport. The
result is then used in Eqs. (7) and (8) to calculate a new temperature. Note
that one can consider several methods to accelerate the iteration,” but in
order to allow consistent cowparisons, we don't employ any acceleration
approaches in the present work.

Method II is a slight variatior of Method I, in which the iteration strateg:
18 altered, but the relationship for the temperature is not modified. Namely,
we insert Eq. (5) into Eq. (3), ylelding the iteration equation

+ ~
(£,0) = = o b — W ) (9)




and
(r,q), (10)

where in Eq. (9), we have approxzimated 773 with its value at the previous time
step. Equations (9) and (10) constitute an iteration on the angularly
{ntegrated 1{intensity that {s analogous to a scattering {teration 1in
reutronics. Upon convergence, Eq. (5) 1s solved for the current temperature,
again with T ° evaluated at the previous time step. Method I1 was suggested
by Fleck and Cummings, but with a slightly different approximation for the new
temperature. This modified approach s not considered here since the
alternative temperature expression should not affect the computational
efficlency of the iteration.

dea (1) = JdaL )

c. Response Matrix Method

We next consider a response @atrix, Method 111, that in some
respects 1is analogous t? the response matrix methods appearing in the neutron
transport iiterature.ls We again use implicit differencing of the radiation
transfer equation so our starting point is Eq. (3). We divide the spatial
dowain _into volume elements V,; each with a surface L; with outward
vormal n,. In each volume element the temperature 1s assumed to have a value
Ty that &s uniform in space. Clearly, the number of volume elements selected
must be large enough so that the assuwption of constani temperatures 1is
reasonabie. In the numerical results to follow, the volume elements are
identical to the spatial mesh on which the equations are differenced.
Equation (3) becomes

+ TI'(?.Q) » ;tv .

.. +~ .’-- 4
(a9 oi)I(r,n) aiacT .

i

The solution of the transport equation in V, may be written as a superposition
of three solutions:

>

TR, = 1 (5,0 + 1.(5,0) + L(5,0) acT , Zev .
u t e i i
These are taken to satisfy the following three equations:
- ~ » " +
. + -
(. & o, 11 (F,n) =0, TeV,,
Iu(?,n) - I(F.Q) , T e Iy (11)
;';.n'1 <0
-~ —~ ‘ ~ - ' -~
(Re® + g, 11 (F,0) = 11 (,0) , ?1‘ Vi (12)
+ ° »
It(r'p) 0 » re l‘i
and Q-ni <0
~" ~ + a
(e + °1]1e("n) T £ e V1 (13)
+ * +
Ie(r.n) 0, rerl



The first contribution I refers to the uncollided photons that have not yet
been absorbed since crossing into Vi during the current time increment at.
The second contribution, I[, consists of those photons that have occupled V
since the preceding time step, again without being absorbed. The last term is
composed of the emiited photons.

Stnce 1,, T, and I, do not depend upon the current temperature in the volume
element Vi, they can be calculated in terus of the photons entering the cell
across Li and those brought forward from the preceding time step, t-At. The
corresponding angularly integrated quantitles ¢ ,¢ , and oe' can be determined
by integrating the angular intens.ties over all angles. Then denoting the
cell volume average by ¢, we may write

- .7 - - 4

- + .

[ 1 .u + ot oeacTi (14)

To calcula%e the cell temperature, we combine this expression with Eq. (95),

averaged over the cell. The result 18 a transcendental equation for the
temperature in element V,

R o
4 o (°u+°:) + cvchi W)
acT1 = . . (15)
‘e — cvT -3
- + —
\1 0e c'a Ti )

94

The response matrix equations require that Egs. (11), (12), and (13) be
digcretized 1in the spatial and angular variables. We will describe a
specifically selecred differencing in the next section. The result from
applying this differencing 13 a set of matrix equations for the average and
exiting intensities for volume elewent 1, given the incoming intensities:

+ -
1 -

4
+ H 2' + L(acTi

[ 7]

and

T =R+ R T+ Raer, '

~j B0

In t' ¢ equations, l_ refg;s to the incoming {ntensity; i refers to the element
average intensity, and 1 refers to outgoing intensity. The R, H, and K are
referred Lo as response wmatrices. The specific values of the matrices depend
upon the angular and spatial difference schemes employed. In the response
matrix approach the inconing intensities are assumed to be known for a given
volume element and the above equations are solved for consistent outgoling
intensities, average inteasities and temperatures. One marches through the
cells iterating on these ccll edge intensities.

D. Space-Angle Discretization

To examine the computatioral efficiency of - the solution
strategles discussed abpve, slab geometry computer codes were developed that
use discrete ordinat;s to discretize the angilar varifable and the step
characteristic method’ to difference the equations in space. The codes were
written to parallel one another as much as possible {n order to faci.itate
timing comparisons. For the purpose of developing the difference eanaticus,
we write fhe equation of radiative transfer as

-a-<-§.' n + '
[y T all(x,u) 0151 I (x,y)



with

~

4
5, = acTt (16)

i

for Yethod 1 and the Response Matrix Method, and

[?j*'(c c-rTi'*'W)/c]
g, = Y (17)

i c T
v =3
[1+ .a (Ti) ]

o
for Method II. Within a spatial cell depicted in Fig. 1, and for a discrete
ordinates direction denoted by m, we divide I into three contributions for
each of the discrete directions.
- + =1 +l
1 () =1 (x)+ Itm(x) I,()S, X ~ex <x /2
Then Eqs. (11), (12), and (13), become

)

[unsx—"‘ aillum(X)+ TIum- 0 ’ xi _1/2<x ‘xi +l/2'
Ium(x) - Im(x) X =X, Iy * Vo >0,
x-xi+l/2,um<0.
I T « (1
[um = 4 cillm(x) + Tltm 1l X, _ A <X <X, 1/2 .
Itm(x) = 0 X =X, Iy » ¥ > 0,
and - <0
; _ X xi“‘ 1/2 ’ Um ’
[ A -
T oillem(XJ *leg T 9 *4- ) AR T iy
Iem(x) -0 X =X Iy Va >0,
( O L]

x = X1+ 1/2 ’ Um

Note that we have replaced tI(x) by 11, the cell average value. This is done
to insure that 1in the limit as At » = the correct steady state solution
results,

Now approximating S by the cell average value, S, and analytically solving the
equation of transfer assuming a known incoming Iintcnsity, the step
characteristic equations result

T “c 2
Im(x1 1,/2) RoIa(® s 1, ) + Hmlm(xi) + K S, u < 0 (18)
and
- -~ ~ - ~ - )
- ' .
I (x,) lem(xizllz )+ H I (x) +K S, up< 0. (19)



The coefficlents are given 1in Table 1 for p = *1+1/ - xi-l/ . The angularly
integrated intensity may be obtained from 2 2

- + +
$ Ou Ot OQS
with

-l R
®, 2} mem[Ium(x1+1/2) + Ium,N-m+1(xi- Vz)] , (20)
o=l

N2 i
‘e " l/2nnz-lwmﬂtn“u:'(xi) e (X)) (21)
and

N/2

¢, - ) wmim' (22)
m=1

E. Implementation

Equations (18) and (19) serve as the basis for all three
iterative methods. In all cases, photons are tracked from left to right from
spatial cell to spatial cell for each positive discrete ordinates direction
and then from right to left for each negative directior. (We assume a set of
directions that are symmetric about y = 0). The methods differ in the
iteration strategy and therefore the treatment of the quasisources in Egs.
(18) and (19). 1In Method I the entire space-angle wesh 13 swept using Eq.
(16) for the quasisource with the temperature for the previous iteration
inserted. The angularly integrated intensities are calculated at each space
point using Eqs. (20) through (22). Finally, the Newton-Raphson Method {is
used to solve Eq. (15) for an updated temperature to be used in Eq. (16) for
the next {iteration. 1In Method 1I, the mesh is swept using Eq. (17) for the
quasisource. Iterations on the angularly integrated intensities continue
until convergence. Then the teamperature at the time step 1is calculated only
once using Eq. (15) with 173 used from the previous time step. Recall that
Method 1II 1is not fully implicit since the tempersture appearing in the
denominator of Eq. (17) 1s evaluated at the previous time step. (Of course
none of the methods are truly implicit if the opacity is temperature-dependent
and evaluated at the previous tim: step.)

In Method III, the Response Matrix Method, the temperature is updated cell-by-
cell as the sweeps progress. For a given direction and cell, Eq. (16) is used
for the quasisource using the latest value of the temperature. Outgoiny and
average Intensities are calculated using the latest values of the incomwing
intensities. Then Eqs. (20) through (22) are used to calculate angular
integrated intensities for the cell. Next, the cell temperature is calculated
from a Newton-Raphson solution of Eq. (15)., With this new temperature, a new
source 1is calculated from Eq. (16) and {is used the next time the cell in
question is solved. The calculation then proceeds to the next cell and
direction.

To compare the {terative stidategies in the grey approximation we have written
three computer codes. The spatial differencing and other characteristics that
are common to the methods are treated by identical algorithms to ensure the

validity of timing comparisons. In the grey model problem an 1isotropic



{ntensity 1is applied at t=0 to the left boundary of a slab. There are no
incoming photons on the right boundary. We consider geveral slab thicknesses,
made up of N cells each of thickness a. The ireraticn is considered converged
for each time step when the relative change in the reflection from the left
boundary and the transmission through the slab are each less than 107°. The
materizl parameters are taken to be g = 1.0 cm ~, C = 81.18 ergsé(cm KeV).
All calculations are performed with an S, Gaussian qladrature set.

The first set of calculations consisted of steady state solutions to assure
that all three methods give identical results with t = O. These calculations
also verify that the spatial truncation error assoclated with step
characteristic is second order. Table 2 indicates the computer run times and
iteration counts for the steady state problem. Only two sets of results are
presented since in the steady state limit of (=0, Methods I and II reduce to
the same algorithm. 1In general, both the computing times and the numbers of
iterations are smaller for the response matrix method than for the standard
method, with the most dramatic improvements occuring - as expected - when the
mesh spacing becomes coarse and/or the ontical thickness of the slab becomes
large. However, even for small wesh spacings and optically thin systems,
where one would expect tha response matrix technique to be at a disadvantage,
the computing times are smaller than for the standard method.

For the time dependent problem, calculations are carried out both for
temperature independent specific heat ana for a problem in which the specific
heat 1is artifically taken to be proportional tc the cube of temperature in
order to obtain linear equations. The reflection and transmission begin at
zero and rise to asymptotic solutions of the steady state values obtained in
the steady state problem. The accuracy of the transient solutions 1s found to
be of first order i1in time, However, Method 11 cannot be used for the
nonlinear case in which the speciiic heat is constant; the nonimplicit tiwme
differencing causes the iteration to diverge unless some physically artificial
time step control procedure is employed.

For all methods, the number of {terations per time step decreases as time
progresses, and the solution approaches the steady state values. This 1is to
be expected since the rate of intensity change decreases with time. Once
again the response matrix approach requires fewer iterations per time step
than either of the other two methods. Even though the computer time per
fteration is moderately longer for the response matrix method, the total
computing time 1s always shorter with differences that are most dramatic for
long time steps ({.e. small values of 7). This is 1llustrated in Table 3,
where the computing times for the methods are compared. It should be noted
that these results are for optically thin cells, and thus the respunse matrix
algorithm may bhe expected to improve relative to the others when coarser
meshes are used. .

I111. MULTIFREQUENCY RADIATIVE TRANSFER
The more realistic situation in radiative transfer allows the
intensity to depend upon photon frequency. We consider the same problem

description as in the grey case. Namely, the background matter is stationary,
the thermal radfative emission is governed by local thermodynamic equilibrium,
and scattering and thermal conduction can be neglected.

A. Basic Equations
To derive the response matrix method for the multifrequency
case, we begin with the frequency-dependent radiative transfer equation for a
volume element V,.



[ %g—t- 4 @b+ 0(v,TDIIER,v,0) = oo, T BT, Fevy, (23)

where v 1s the photon frequency and B(V,Ti) is the Planckian distribution at
temperature T defined by

3
2hv (ehv/kT_l)-l

B(\)'T) = p) .
c
Associated with Eq. (23) 1is an energy balance equation
3Ty 4
¢y 3¢ " f dvo(v.Ti)Oi(v,t) - aocT1 + Hi, (24)

where

0,(v,0) = - [ dV[daL(¥,q,v,1)

iv
and 1

jde(v,Ti)a(v.Ti)
o favB(v,Ti) : (25)

We again assume that the specific heat is independent of temperature.

In implementing the response matrix formalism, we assume that the distribution
of incoming photons ir V., 1s known. In turn, the energy deposition in V,,

the new temperaturc Ty, and the distribution of exiting photons can be
calculated. The implementation again requires differencing the time,
frequency, angular and spatial variables. 1In the following, we proceed in a
matter analogous to the grey case and therefore abbreviate the development.

B. Time and Frequency Discretization
We apply implicit time differencing to Eq. (23) and (24) evaluating
the opacity at the previous time step to obtain

[@:3 + 0(v) + JI(F,0,0) = o(VIB(V,T,) + IU(E,Q,0) , eV, (26)
and
cv-rcT1 = fdvc(v)oi(v) - oiacT? +W +c1cpTi , ?evi. (27)

We next define frequency groups v_ € y eesC v C v eoe <y,, and define the
o ] g-1 g G
frequency group intensity by

- v - Iy
1 (Fa) -8 lavi(2,a,v)
v
Integrating Eqs.g(26) and (27) over a frequency interval yields
et o+ g+ 2q) = o + 19T 0 F
(ne¥ g 1) lg(r.ﬂ) °ng(Ti) rlg(r.n) ’ reV
and

"y - 4+ + )
o ¢ oiacTi W cv1cT ?evi, (28)

- L
cvrcT g¥gt {

i

aq ~1

vhere og is the conventional multifrequency cross section,



\"]
- g-1 .
Bg(Ti) { de(v,Ti)

and g

) E,og(Ti)Bg(Ti)
1 7 B_(T,)
g & 1

C. Respongse Matrix Formalism
We again divide the photon intensity into three contributions:
PO + > - PO +>
~ + + .
Ig(r.n) Igu(r.n) Ig:("“) Ige(r,n)sg(ri) , reV,. (29)

1f the group indexing is deleted then 1, I, and I, satisfy Eqs. (11) (12) and
(13).

As 1in the grey case, the sequence of calculations involves first determining
1,, and 1, from Egs. (13) and (14) given the latest incoming and average
1§tensit1e%. This calculation does not require knowledge of the cell
teoperature., Using the angularly integrated values of these intensities, a
new temperature can be calculated from Eqs. (28) and (29). To derive a
convenient expreesion for the temperature, we insert Eq. (29) into Eq. (28) to
obtain

- ! " * { N Iy
¢, 1eTy g cg('l‘i)(<bgu + °g:) + E cngi) ¢ B (Ti)

ge g
(30)
4 ?
-q(Ti)acTi + Hi+ crcp'r1 .
From Eq. (25), we may write
O(Ti)x BS(Tl) o(Ti)acT?
1- "\f .
) cgETi)Ba(Ti) ] °g(T1)i;(T{)
g g
Using this expression in Eq. (30), we obtaln
g °g(T1)Bg(T1)°ge1 .
- 2 =» 1 +
o(Tae 11 - Sy—pprygrpry—) Ty *tere Ty = [ o (TpCe, + 0.0 GO
g g 1"7g "1 8
+ U1+ CvTCTi'

Inside the brackets on the left side of Eq. (31), we have replaced T by T' to
siwplify the solution of the transcendental expression for T. 1If the npacity
i not a strong function of temperature, no significant error should be
introduced by this simplification.
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D. Implementation

The 1implementation of the response matrizx method requires that
the foregoing wmultifrequency formulation be combired with space-angle
differencing of the equations. Since this 1is carried out in a manner
completely analogous tn the grey case, it i3 not repeated here. We have
written a multifrequency cede for treating time-dependent radiative transfer
problems {n slab geometry wusing either step characteristic or di{amond
differencing on the spatial variable.

For multifrequency problems we have compared our results with those published
for the temperature distrabutions of ref. (5), and the agreement 1is
excellent, One problem considered consists of a 20 cm slab inigially at 1 ev
temperature and an analytic opacity given by 27(l-exp (=v/K1))/v'., At t = O

a 1 Kev source is placed at the left. In Fig. 1 1s shown the fractional
energy deposition frcm the 20 cm slab as a function of time. The case for
transmitted energy ie particularly interesting, since it shows an increase at
2/3 nanoseconds, the time when the uncollided radiation first arrives at the
right -hand face, and a second increase at about seven nanoseconds, when the
material in the vicinity of the right boundary has heated gsufficiently for
significant amounts of emitted radiation to escape to the right. The
transient timing comparisons, givean in Table 1 for the temperature at 10
nanoseconds. In the steady state calculavions the same problem is shown but
with 1+ = 0; the diamond differencing 4ncludes ncgative flux fixup. The
response matrix (RM) method shows increasing advantage over source iteration
(SI) method 88 the time stcps are increased and with {increased opticsl
thickness of the slab., Por an 80 cm slab calculation under steady state
conditions the ccmputing time ratio 4s (SI/RM) = 3,2 for characteristic
differencing.

As in the grey case a companion code was written using a standard source
fteration technique in which the space-angle grid is swept for all frequency
groups between each update of the temperature distribution, Identicul
discretizaton techniques are used 1in both codes to 1insure validity of the
comparisons. Steady state solutions (¢t = 0) sre tabulated in Table 3 for
different slab thicknesses and numbers of mesh points using the step
character{stic versions of the codes. The response matrix method is seen to
provide consistently superior results.

For the transient calculations shown in Fig. 1, the times are comparable:
8.58 CPU(sec) for the response matrix and 8.92 CPU(sec) for the reference
solution. This 1s thought to be due to the small time step (large 1) which
requires no more than few iterations per time step with either of the
methods. When diamond differencing (with fixup) 1is applied, however, the
regponse watrix method requires less than 8 CPU(sec) while the reference
method increases to more than 20 CPU(scc); with diamond differencing the
reference method requires as many as scven times as many {terations per time
step as the response matrix method, even with the small time step.

IV, DISCUSSION
We have demonstrated the use of respnnse matrix wethods for an
fmportant class of radiative transfer problems in which the radiation and
material energy densities are not generally in equilibrium. Response matri>
solutions are coupared with reference solutions found i{n the literature and
the agreement is excellent., Careful comparison with companion codes for which
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the standard source iteration method is employed indicates that for long time
steps and for optically thick mesh cells, the method performs very well. For

many appl:cations, these are just the problems most frequently encountered.

To fully exploit the method and to assure that che results here apply to wore
general cases further research 1is required. Since diffusion synthetic
acceleration has hee: applied to some of the other approaches considered here,
an effective acceleration approach for response matrix iterations should be
developed, applied and tested. Additionally, much more experience and
analyses are needed to test convergence of the response matrix algorithm for
wider classes of problems. Pinally, the wmethod must be applied to more
complicated geometries. The results obtained from simple problems auch as
those described above encourage further development of the method,.
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Table 1

Response Matrix Coefficients for Slab Geometry
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Table 2

CPU(sec) Slab Geometry Grey Steady State Problem

Thickness = 16 mtp Thickness = 16 ogax

Method I & I1 Method II1 Method I&II Method II1
oAX CPU(sec) 1t* Cpu(sec) it* CPU(sec) 1it* CPU(sec) 1t*
C.25 .970 704 .502 157 . 042 93,027 24
0.50 470 680 .201 132 .084 235 037 47
1.0 216 6N9 .066 86 .210 609 067 86
2.0 .088 472 .017 43 <490 139¢ .097 125
4.0 .034 335 .005 19 .950 2723 .109 142
8.0 023 239 —-— 10 1.700 4819 111 144
*1terations

Table 3

CPU (sec) Grey Transient Problem
Ttickness = 16 mfp; o8x = 0.5

e(T) T Method 1 Mettod 11  Method 111

0T3 o5 7.91 2.24 2.65

a1’ .05 1.278 0.946 0.588

const. .05 1.991 -—— 0.848



Table 4

Multifrequency Steady State Problem

AX = T/20 AX = 1 cm
T+ RM Reference K™ Reference
CPU(sec) 1it* CPU(sec) {1t* CPU(sec) 1it* CPU(sec) 1t*
20 1.55 63 3.63 178 1.55 63 3.63 178
40 2.04 83 5.00 243 7.43 153 17.62 434
80 2.64 108 6.60 324 38.80 401 - -
+
Thickness (cm)
iterations
104
Reflection -
08- — 4
0.4
0.4
0.7 Transmission
7 —Absorption
0.0 < T T | ™ T -1 7
0 2 & é ] 10 12 % 16

time [nanoseconds)

Fig. 1. Fractional Energy Deposition
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